Question 1

Question 4
(Suggested maximum time: 20 minutes)
(a) Prove that the angle at the centre of a circle standing on a given arc is twice the angle at any point of the circle standing on the same arc.

Diagram:

Given:

To Prove:

Construction:

Proof:

(b) P, Q, R, and S are points on a circle with centre O. $|\angle P R S|=32^{\circ}$, as shown.
(i) Find $|\angle S O P|$.

(ii) Find $|\angle S Q P|$.

-	T		-		\square	-	,	

(c) A, B, C, and D are points on a circle, as shown below.
$[A C]$ and $[B D]$ are diameters of the circle.
Prove that $A B C D$ is a rectangle.

Question 2

In the diagram below, $|\angle M N P|=|\angle P R Q|$.

(i) Prove that $\triangle M N P$ and $\triangle Q R P$ are similar.

(ii) Is $N M$ parallel to $Q R$? Give a reason for your answer.

Given $|M N|=6,|N P|=4,|Q P|=9$, and $|P R|=10$, find:
(iii) $|Q R|$

(iv) $|Q M|$.

Question 3

Prove that the angle at the centre of a circle standing on a given arc is twice the angle at any point of the circle standing on the same arc.

Diagram:

Given:																				
To Prove																				

Construction:

Proof:

