Question 1

(b) The graphs of the functions y = h(x) and y = k(x) are shown below.

Write down the roots of each function.

Hence, or otherwise, write down an equation for each function.

Roots of h(x):

$$x = -2$$
 and $x = 3$.

Equation:

$$h(x) = (x+2)(x-3)$$
, or $h(x) = x^2 - x - 6$.

[Check y-intercept is correct, i.e. co-efficient of x^2 is correct: h(0) = -6, which corresponds to the graph.]

Roots of k(x):

$$x = -3$$
 and $x = 2$.

Equation:

$$k(x) = (x+3)(x-2)$$
, or $k(x) = x^2 + x - 6$.

[Check y-intercept is correct, i.e. co-efficient of x^2 is correct: k(0) = -6, which corresponds to the graph.].

(i) g is the function $g: x \mapsto x-1$, where $x \in \mathbb{R}$. Find the value of each of the following.

$$g(3) = 3 - 1 = 2.$$

$$g(-2) = -2 - 1 = -3.$$

(ii) f is the function $f: x \mapsto 2x^2 - x - 6$, where $x \in \mathbb{R}$.

Using the same axes and scales, draw the graphs of the functions y = f(x) and y = g(x) in the domain $-2 \le x \le 3$.

Graphing g:

Straight line, so only need the two points from (i):

$$(3,2)$$
 and $(-2,-3)$.

Or:

$$g(x) = x - 1$$

x	- 1	y
-2	- 1	-3
-1	- 1	-2
0	- 1	-1
1	- 1	0
2	- 1	1
3	- 1	2
	-2 -1	-2 -1 -1 -1

Graphing f.

$$f(-2) = 4$$

$$f(-1) = -3$$

$$f(0) = -6$$

$$f(1) = -5$$

$$f(2) = 0$$

$$f(3) = 9$$

Or:

$$f(x) = 2x^2 - x - 6$$

х	$2x^2$	- x	- 6	y
-2	8	+2	- 6	4
-1	2	+ 1	- 6	- 3
0	0	0	- 6	- 6
1	2	- 1	- 6	- 5
2	8	- 2	- 6	0
3	18	- 3	- 6	9

Use your graphs from (ii) to estimate:

(iii) the minimum value of f(x)

$$f_{\min}(x) = -6.1$$
 ... see graph

(iv) the range of values of x for which f(x) < 0

$$-1.5 < x < 2$$
 ... see graph

(v) the range of values of x for which $g(x) \ge 0$.

$$x \ge 1 \dots see graph$$

Question 3

$$2a - b + 2c$$

$$8a - 2b + 2c$$

$$18a - 3b + 2c$$

$$32a - 4b + 2c$$

$$50a - 5b + 2c$$

$$2nd difference is constant therefore the relationship is quadratic$$

Question 4

Solve
$$f(x) = 0$$
 Solve $g(x) = 0$ Solve $h(x) = 0$
$$(2x-3)(x+2) = 0$$

$$x = \frac{3}{2}, x = -2$$
 Solve $f(x) = 0$ Solve $f(x) = 0$
$$x = 0, x = 2$$

Question 5

A group of four students is studying graphs of functions of the form $f: x \mapsto x^2 + 2x + k$, $x \in \mathbb{R}$. Each takes an integer value of k and draws the graph of their function in a suitable domain. Maria took k = -8 and drew the graph below.

(a) Use the graph to write down the roots of the equation $x^2 + 2x - 8 = 0$.

(b) Keith's graph passes through the point (3, 2). Find the value of k that Keith used.

(c) On Alice's graph, the two roots of the function are the same. Find the value of k that Alice used.

- (d) Draw a sketch of Alice's function on the diagram shown in part (a).
 - (e) Emma's graph shows that the roots of her function are -5 and 3. Find the value of k that she used.

