Question 1

(b) The graphs of the functions $y=h(x)$ and $y=k(x)$ are shown below.

Write down the roots of each function.
Hence, or otherwise, write down an equation for each function.
Roots of $h(x): \quad x=-2$ and $x=3$.
Equation:

$$
h(x)=(x+2)(x-3), \text { or } h(x)=x^{2}-x-6 .
$$

[Check y-intercept is correct, i.e. co-efficient of x^{2} is correct: $h(0)=-6$, which corresponds to the graph.]

Roots of $k(x)$: $\quad x=-3$ and $x=2$.
Equation:

$$
k(x)=(x+3)(x-2), \quad \text { or } \quad k(x)=x^{2}+x-6 .
$$

[Check y-intercept is correct, i.e. co-efficient of x^{2} is correct: $k(0)=-6$, which corresponds to the graph.].
(i) g is the function $g: x \mapsto x-1$, where $x \in \mathbb{R}$. Find the value of each of the following.

$$
\begin{aligned}
& g(3)=3-1=2 \\
& g(-2)=-2-1=-3
\end{aligned}
$$

(ii) f is the function $f: x \mapsto 2 x^{2}-x-6$, where $x \in \mathbb{R}$.

Using the same axes and scales, draw the graphs of the functions $y=f(x)$ and $y=g(x)$ in the domain $-2 \leq x \leq 3$.

Graphing g:
Straight line, so only need the two points from (i):
$(3,2)$ and $(-2,-3)$.

Or:
$g(x)=x-1$

x	x	-1	y
-2	-2	-1	-3
-1	-1	-1	-2
0	0	-1	-1
1	1	-1	0
2	2	-1	1
3	3	-1	2

Graphing f :
$f(-2)=4$
$f(-1)=-3$
$f(0)=-6$
$f(1)=-5$
$f(2)=0$

$$
f(3)=9
$$

Or:

$f(x)=2 x^{2}-x-6$				
x	$2 x^{2}$	$-x$	-6	y
-2	8	+2	-6	4
-1	2	+1	-6	-3
0	0	0	-6	-6
1	2	-1	-6	-5
2	8	-2	-6	0
3	18	-3	-6	9

Use your graphs from (ii) to estimate:
(iii) the minimum value of $f(x)$

$$
f_{\min }(x)=-6 \cdot 1 \quad \ldots \text { see graph }
$$

(iv) the range of values of x for which $f(x)<0$

$$
-1 \cdot 5<x<2 \ldots \text { see graph }
$$

(v) the range of values of x for which $g(x) \geq 0$.

$$
x \geq 1 \ldots \text { see graph }
$$

\(\left.\left.$$
\begin{array}{|l}\left.\begin{array}{l}2 a-b+2 c \\
8 a-2 b+2 c \\
18 a-3 b+2 c\end{array}\right\} \\
32 a-4 b+2 c \\
50 a-5 b+2 c\end{array}
$$\right\} \begin{array}{l}Diff=6 a-b

Diff=10 a-b

Diff=14 a-b

Diff=18 a-b\end{array}\right\}\)| Diff $=4 a$ |
| :--- |
| Diff $=4 a$ |
| $2^{\text {nd }}$ difference is constant therefore the relationship is quadratic |

Question 4

Solve $f(x)=0$	Solve $g(x)=0$	Solve $h(x)=0$
$(2 x-3)(x+2)=0$ $x=\frac{3}{2}, x=-2$	$(x-3)(x-3)=0$ $x=3$	$x(x-2)=0$ $x=0$, $x=2$

Question 5

A group of four students is studying graphs of functions of the form $f: x \mapsto x^{2}+2 x+k, \quad x \in \mathbb{R}$. Each takes an integer value of k and draws the graph of their function in a suitable domain. Maria took $k=-8$ and drew the graph below.

(a) Use the graph to write down the roots of the equation $x^{2}+2 x-8=0$.

					Roots 2 and - 4																				

(b) Keith's graph passes through the point $(3,2)$. Find the value of k that Keith used.

								,	2	,												
							$2=$	3^{2}	$2(3$) +												
							=	$9+$	$6+$													
							=	-13														

(c) On Alice's graph, the two roots of the function are the same.

Find the value of k that Alice used.

(d) Draw a sketch of Alice's function on the diagram shown in part (a).
(e) Emma's graph shows that the roots of her function are - 5 and 3 .

Find the value of k that she used.

