Question 1

(a) Prove that the angle at the centre of a circle standing on a given arc is twice the angle at any point of the circle standing on the same arc.

Given: A circle with centre O. Points A, B, and C on the circle. Angles p and r, as shown.
To Prove: $p=2 r$.
Construction: Join B to O, and extend to D. Mark the angles s, t, and w.
Proof: $\quad|O A|=|O B| \quad$ radii of circle Step 1
$\therefore s=t \quad$ isosceles triangle Step 2
$w=s+t \quad$ exterior angle Step 3
$\therefore w=2 t$
Step 4
Similarly, $(p-w)=2(r-t)$.

$$
\begin{align*}
\text { So } p & =(p-w)+w \\
& =2(r-t)+2 t \\
& =2 r \tag{Step 5}
\end{align*}
$$

(b) P, Q, R, and S are points on a circle with centre O. $|\angle P R S|=32^{\circ}$, as shown.
(i) Find $|\angle S O P|$.
$|\angle S O P|=2 \times 32^{\circ}=64^{\circ}$.
(ii) Find $|\angle S Q P|$.

$$
|\angle S Q P|=|\angle S R P|=32^{\circ} .
$$

(c) A, B, C, and D are points on a circle, as shown below.
$[A C]$ and $[B D]$ are diameters of the circle.
Prove that $A B C D$ is a rectangle.

We just need to prove that the four angles are 90°.
$|\angle B A D|=|\angle B C D|=90^{\circ}$, as $[B D]$ is a diameter.
Similarly, $|\angle C B A|=|\angle C D A|=90^{\circ}$.
So $A B C D$ is a rectangle.

Question 2

(i) Prove that $\triangle M N P$ and $\triangle Q R P$ are similar.

Proof: $\quad|\angle M N P|=|\angle P R Q| \quad$ (given) $|\angle N P M|=|\angle Q P R| \quad$ (vertically opposite)
$|\angle N M P|=|\angle P Q R| \quad$ (third angle)
\Rightarrow Triangles are similar.
(ii) Is $N M$ parallel to $Q R$? Give a reason for your answer.

Answer: Yes
Reason: $\quad|\angle M N P|=|\angle P R Q|$ or $|\angle N M P|=|\angle P Q R|$ or alternate angles are equal.

Given $|M N|=6,|N P|=4,|Q P|=9$, and $|P R|=10$, find:
(iii) $|Q R|$

By similar triangles $\triangle M N P$ and $\triangle Q R P$:

$$
\begin{aligned}
\frac{|Q R|}{6} & =\frac{10}{4} \\
\Rightarrow|Q R| & =6 \times \frac{10}{4}=15 .
\end{aligned}
$$

(iv) $|Q M|$.

$$
\text { By similar triangles } \triangle M N P \text { and } \triangle Q R P:
$$

$$
\begin{array}{l|l}
\frac{|P M|}{9}=\frac{6}{15} \text { or } \frac{4}{10} & \text { Or: } \\
\Rightarrow|P M|=\frac{18}{5} \text { or } 3 \cdot 6 & \\
\Rightarrow & =\frac{|P M|}{4} \\
\Rightarrow|P M|=9+3 \cdot 6=\frac{63}{5} \text { or } 12 \cdot 6 . & \Rightarrow
\end{array}
$$

Question 3

Given: \quad A circle with centre O, with points A, B and C on the circle
To Prove: $\quad|\angle B O C|=2|\angle B A C|$
Construction: Join A to \mathbf{O} and extend to \mathbf{R}
Proof: In the triangle AOB

$$
\begin{aligned}
|\mathrm{AO}| & =|\mathrm{OB}| \quad \text { Radii } \\
\Rightarrow|\angle \mathrm{OBA}| & =|\angle \mathrm{OAB}| \quad \text { Theorem } 2 \text { (isosceles } \triangle \text {) } \\
|\angle \mathrm{BOR}| & =|\angle \mathrm{OBA}|+|\angle \mathrm{OAB}| \quad \text { Theorem } 6 \text { (exterior angle) }
\end{aligned}
$$

$$
\therefore \quad|\angle \mathrm{BOR}|=|\angle \mathrm{OAB}|+|\angle \mathrm{OAB}|
$$

$$
\therefore \quad|\angle B O R|=2|\angle O A B|
$$

Similarly $\mid \angle$ ROC $|=2| \angle O A C \mid$
$\therefore|\angle B O C|=2|\angle B A C|$

