Question 1

(a) Prove that the angle at the centre of a circle standing on a given arc is twice the angle at any point of the circle standing on the same arc.

Diagram:										
Given: A	circle with centre O.	Points A , B , and C on f	the circle. Angles p and r , as shown.							
To Prove:	p = 2r.									
Construct	<i>tion</i> : Join <i>B</i> to <i>O</i> , and	extend to D. Mark the	angles s , t , and w .							
Proof:	OA = OB	radii of circle	Step 1							
	$\therefore s = t$	isosceles triangle	Step 2							
	w = s + t	exterior angle	Step 3							
	$\therefore w = 2t$		Step 4							
Si	imilarly, $(p-w) = 2($	r-t).								
S	o p = (p - w) + w									
	=2(r-t)+2t									
	=2r		Step 5							

(c) A, B, C, and D are points on a circle, as shown below. [AC] and [BD] are diameters of the circle.

Prove that ABCD is a rectangle.

We just need to prove that the four angles are 90°. $|\angle BAD| = |\angle BCD| = 90^\circ$, as [BD] is a diameter. Similarly, $|\angle CBA| = |\angle CDA| = 90^\circ$. So *ABCD* is a rectangle.

Question 2

(i) Prove that ΔMNP and ΔQRP are similar.

Proof:
$$|\angle MNP| = |\angle PRQ|$$
 (given)
 $|\angle NPM| = |\angle QPR|$ (vertically opposite)
 $|\angle NMP| = |\angle PQR|$ (third angle)
 \Rightarrow Triangles are similar.

(ii) Is NM parallel to QR? Give a reason for your answer.

Answer: Yes Reason: $|\angle MNP| = |\angle PRQ|$ or $|\angle NMP| = |\angle PQR|$ or alternate angles are equal.

Given |MN| = 6, |NP| = 4, |QP| = 9, and |PR| = 10, find:

(iii) |*QR*|

By similar triangles
$$\triangle MNP$$
 and $\triangle QRP$:
 $\frac{|QR|}{6} = \frac{10}{4}$
 $\Rightarrow |QR| = 6 \times \frac{10}{4} = 15.$

(iv) |QM|.

By similar triangles $\triangle MNP$ and $\triangle QRP$:							
$\frac{ PM }{9} = \frac{6}{15}$ or $\frac{4}{10}$	Or:		$\frac{ PM }{4}$	=	$\frac{9}{10}$		
$\Rightarrow PM = \frac{18}{5} \text{ or } 3.6$		\Rightarrow	PM	=	$4 \times \frac{9}{10}$	=	$\frac{18}{5}$ or $3 \cdot 6$
$\Rightarrow QM = 9 + 3 \cdot 6 = \frac{63}{5} \text{ or } 12 \cdot 6.$		\Rightarrow	QM	=	$9 + 3 \cdot 6$	=	$\frac{63}{5}$ or $12 \cdot 6$.

Question 3

