Question 1

(i) Complete the table below to show all of the possible outcomes. Two outcomes have already been filled in for you.

ННН	THH
HHT	THT
HTH	TTH
HTT	TTT

(ii) Find the probability of getting two heads and one tail.

$$Pr(2 H, 1 T) = \frac{3}{8}$$

(iii) Jamie says: "You have the same probability of getting three heads as you do of getting two heads and one tail."

Do you agree with Jamie? Give a reason for your answer.

Answer: No

Reason: $Pr(3H) = \frac{1}{8}$ but $Pr(2H, 1T) = \frac{3}{8}$

Or:

Reason: There is only 1 way to get three heads. There are 3 ways to get two heads

and one tail.

(iv) Max says: "You have the same probability of getting HHH as you do of getting HTH." Do you agree with Max? Give a reason for your answer.

Answer: Yes

Reason: $Pr(H H H) = \frac{1}{8}$ and $Pr(H T H) = \frac{1}{8}$

Or:

Reason: There is only one way to get each event.

- If the skier starts at point A, in how many different ways can the skier reach the point E? (b) (i)

 - $A \rightarrow B \rightarrow E$ $A \rightarrow B \rightarrow D \rightarrow E$ $A \rightarrow C \rightarrow D \rightarrow E$

If the skier starts at point A, find the probability that the skier will reach the point E. (ii)

$$1. \qquad \frac{1}{2} \times \frac{1}{2} \qquad = \qquad \frac{1}{4}$$

$$2. \qquad \frac{1}{2} \times \frac{1}{2} \times \frac{1}{3} = \qquad \frac{1}{12}$$

3.
$$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{3} = \frac{1}{12}$$

1.
$$\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$

2. $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{3} = \frac{1}{12}$
3. $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{3} = \frac{1}{12}$ Probability = $\frac{1}{4} + \frac{1}{12} + \frac{1}{12} = \frac{5}{12}$

(a) Represent the information in a Venn diagram.

(b) If one person is chosen at random, what is the probability that the person chosen did not vote in any of the three elections?

Probability person did not vote = $\frac{4}{54}$ or $\frac{2}{27}$

(c) If one person is chosen at random, what is the probability that the person chosen voted for at least two different parties?

Probability person voted for at least two parties = $\frac{3+5+7+4}{54} = \frac{19}{54}$

(d) If one person is chosen at random, what is the probability that the person chosen voted for the same party in all three elections?

Probability person voted for the same party = $\frac{15+6+10}{54} = \frac{31}{54}$

Event

Probability

A club is selected in a random draw from
a pack of playing cards

$$\frac{1}{4}$$

Α

В

С

D

E

$$\frac{1}{2}$$
 OR evens OR $\frac{50}{50}$

$$\frac{1}{7}$$

(b) Place each of the letters A, B, C, D and E at its correct position on the probability scale below.

Question 5

(a) What is the probability of the spinner landing on a blue sector?

$\frac{2}{3}$ or	240 360			

(b) Find the probability of getting a head and a red.

	•	 _							
1	1 1								
$\frac{1}{2}$	$\times \frac{1}{3} = \frac{1}{6}$								
	, 3 0								

(c) Find the probability of getting a tail and a blue.

$\frac{1}{2} \times \frac{2}{3} = \frac{1}{3}$	
--	--

Question 6

				1												
			1													
			6													

A fair die is tossed 500 times.

The results are partially recorded in the table below.

Number on die	1	2	3	4	5	6
Frequency	70	82	86	90	91	81
Relative Frequency	·14	·16	·17	·18	·18	·16

(b) Calculate the number of times a 3 appeared. Write your answer in the table above.

500 – (70+82+90+91+81)			
86			
	-		

(c) Calculate the relative frequency of each outcome and write it into the table above. Give your answers correct to 2 decimal places.

(d) Give a possible reason for the difference in value between the relative frequency for 1 in the table and your answer to part (a).

